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Abstract. We apply a signal processing technique known as indepen-
dent component analysis (ICA) to multivariate financial time series. The
main idea of ICA is to decompose the observed time series into statis-
tically independent components (ICs). We further assume that the ICs
follow the variance gamma (VG) process. The VG process is Brownian
motion evaluated with drift at a random time given by a gamma process.
We build a multivariate VG portfolio model and analyze empirical re-
sults of the investment.

1. Introduction

The relevance of higher moments for investment design has long been
recognized in the finance literature and we cite Rubinstein (1973), and
Krauss and Litzenberger (1976) from the earlier literature investigating the
asset pricing implications of higher moments. More recently we refer to Har-
vey and Siddique (2000) for the investigation of coskewness in asset pricing.
Additionally we note that there appear to be many investment opportunities
yielding non-Gaussian returns in the shorter term. This is evidenced by the
ability to construct portfolios with return distributions that in fact display
very high levels of kurtosis, a typical measure of non-Gaussianity (Cover
and Thomas (1991)). The shorter term perspective is also appropriate for
professional investors who can rebalance positions with a greater frequency.
Furthermore, we also recognize that there are many ways to construct return
possibilities with the same mean and variance but differing levels of skew-
ness and kurtosis. Investment analysis based on traditional Mean-Variance
preferences (Markowitz (1952)) will not vary the investment across these
alternatives, but the presence of skewness preference and kurtosis aversion
suggests that the optimal levels of investment should vary across these alter-
natives. We therefore consider accounting for higher moments in investment
analysis.

Key words and phrases. independent component analysis, variance gamma process,
utility function.
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The theoretical advantages of accounting for higher moments notwith-
standing, we note that the computational burdens of portfolio theory using
multivariate distributions with long-tailed marginals are extensive in both
dimensions of model estimation and the subsequent portfolio design. This
lies in sharp contrast to the relative ease with which mean-variance analy-
sis may be executed for large portfolios. We enhance the computational
efficiency of such a portfolio theory by bringing to bear some of the fast
Fourier transform advances made in the derivative pricing literature as for
example Madan, Carr and Chang (1998) and Carr, Geman, Madan and Yor
(2002) to facilitate the univariate estimation problems. We adopt the per-
spective of independent components analysis (ICA)(Hyvärinen, Karhunen
and Oja (2001)) to build dependence and regard returns as linear mixtures
of independent processes that are modeled by the Lévy processes used in
the derivatives literature. The bulk of the estimation is done by univari-
ate methods after adopting the methods of fast ICA (Hyvärinen (1999)) to
identify the independent components. The tractability of the final portfolio
design is also accomplished by reduction to univariate investment problems
for investment in the independent components. The univariate investment
problems are solved for in closed form for certainty equivalents related to ex-
ponential utility. The final package is thereby rendered quite efficient and we
present a back test comparison with mean variance or Gaussian investment.

The outline of the paper is as follows. Section 2 briefly presents results
for skewness preference and kurtosis aversion in investment design. The
distributional models used for the independent components are described
in Section 3. The univariate component investment problem is solved in
closed form in Section 4. The portfolio problem is reduced to a sequence of
univariate problems in Section 5. Section 6 briefly describes the procedures
of ICA for identifying the independent components. The results of the back
test are provided in Section 7. Section 8 concludes.

2. Non Gaussian Investment

We begin with fourth order approximations to a general utility function.
The reason for going up to the fourth order is that for investments which
agree on mean and variance, the third order recognizes a higher order reward
statistic for utilities displaying skewness preference, but no risk statistic is
then accounted for once we have conditioned on common variances. The
next higher order risk statistic is kurtosis, and to account for both reward
and risk we consider fourth order approximations to utility. We therefore
write for utility U(x) the approximation

U(x) ≈ U(µ)+U 0(µ)(x−µ)+1
2
U 00(µ)(x−µ)2+1

6
U 000(µ)(x−µ)3+ 1

24
U 0000(µ)(x−µ)4.



ASSET ALLOCATION FOR CARA UTILITY WITH MULTIVARIATE LÉVY RETURNS3

Define the skewness s and the kurtosis k (Karr (1993)) by

s =
E[(x− µ)3]

σ3

k =
E[(x− µ)4]

σ4

and write an approximation for the expected utility as

E[U(x)] ≈ U(µ) + 1
2
U 00(µ)σ2 +

1

6
U 000(µ)sσ3 +

1

24
U 0000(µ)kσ4.

We also approximate

U(µ) ≈ U(0) + U 0(0)µ
and assume that U(0) = 0 and U 0(0) = 1. We therefore write

E[U(x)] ≈ µ+ 1
2
U 00(µ)σ2 +

1

6
U 000(µ)sσ3 +

1

24
U 0000(µ)kσ4.

Employing the exponential utility as a typical approximation to utility with
risk aversion parameter η, we get

E[U(x)] ≈ µ− η
2
σ2 +

η2

6
sσ3 − η

3

24
kσ4.

Consider the question of investing y dollars in a non-Gaussian return
with mean µ, variance σ2, skewness s, and kurtosis k.

The expected utility from this investment on a financed basis with in-
terest rate r is approximately

(µ− r)y − η
2
σ2y2 +

η2

6
sσ3y3 − η

3

24
kσ4y4.

The first order condition for the optimal level of investment is

(2.1) µ− r − ησ2y + η
2

2
sσ3y2 − η

3

6
kσ4y3 = 0.

We may write equation (2.1) as

(2.2)
µ− r
y∗

= ησ2 − η
2

2
sσ3y∗ +

η3

6
kσ4(y∗)2.

For positive excess return and skewness the optimal y is given by the inter-
section of a parabola and a hyperbola. This will occur at some positive level
for y∗.

We may observe that increased excess returns raise the hyperbola and
so raise the level of y∗. Also an increase in σ raises the parabola and so
leads to a decrease in y∗. An increase in skewness decreases the slope of the
parabola at 0 and shifts the intersection with the hyperbola out further thus
increasing y∗, while an increase in kurtosis has the opposite effect.
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For a formal analysis of the comparative statistics, we evaluate the dif-
ferential of the first order condition with respect to y∗, s, and k as our
particular interest. This yields the following equation:µ

µ− r
(y∗)2

− η
2

2
sσ3 +

η3

3
kσ4y∗

¶
dy∗ =

η2

2
σ3y∗ds− η

3

6
σ4(y∗)2dk.

We then have

dy∗

ds
=

η2σ3y∗

2

µ
µ− r
(y∗)2

− η
2

2
sσ3 +

η3

3
kσ4y∗

¶−1
,

dy∗

dk
= −η

3σ4(y∗)2

6

µ
µ− r
(y∗)2

− η
2

2
sσ3 +

η3

3
kσ4y∗

¶−1
.

The effects of skewness and kurtosis on investment are, respectively,
positive and negative, provided the term in the denominator is positive. We
may also write that

dy∗

ds
=

η2σ3(y∗)2

2

µ
µ− r
y∗

− η
2

2
sσ3y∗ +

η3

3
kσ4(y∗)2

¶−1
,(2.3)

dy∗

dk
= −η

3σ4(y∗)3

6

µ
µ− r
y∗

− η
2

2
sσ3y∗ +

η3

3
kσ4(y∗)2

¶−1
.(2.4)

Substituting equation (2.2) into equations (2.3) and (2.4) , we obtain:

dy∗

ds
=

η2σ3(y∗)2

2

µ
ησ2 − η2sσ3y∗ + η

3

2
kσ4(y∗)2

¶−1
,(2.5)

dy∗

dk
= −η

3σ4(y∗)3

6

µ
ησ2 − η2sσ3y∗ + η

3

2
kσ4(y∗)2

¶−1
.(2.6)

Hence for the signs of equations (2.5) and (2.6) to be positive and negative,
respectively, we need that

1− ηsσy∗ + η
2

2
kσ2(y∗)2 > 0.

The second derivative of expected utility evaluated at the optimum is

−ησ2 + η2sσ3y∗ − η
3

2
kσ4(y∗)2.

For a maximum, the above expression must be negative. This gives us

ηsσy∗ < 1 +
η2

2
kσ2(y∗)2

or equivalently,

1− ηsσy∗ + η
2

2
kσ2(y∗)2 > 0.

Hence we observe that investment is positively responsive to skewness and
negatively responsive to kurtosis.
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3. Modelling Distributions

We could build investment strategies based on equation (2.2), which we
refer to as mvsk investment or investment based on the mean, variance,
skewness, and kurtosis. This is essentially a higher moment analog to the
classical mean-variance investor. One works with the moments up to the
fourth order with no explicit distributional assumptions and a fourth order
expansion of utility.

Higher moments like the fourth power are quite volatile with a variance
that is at the level of the eighth moment. Accurate estimates require large
data series from a common distribution. Though long financial time series
are available, it is not clear that distributions are stationary over such long
periods. The approach we take is to employ Lévy process distributions that
easily accommodate higher moments like skewness and kurtosis, but one may
employ estimation strategies which do not get to the eighth moment for the
variance. With some process knowledge, one may use lower order powers
to estimate the underlying higher moments. The specific Lévy process that
we employ is the Variance Gamma (VG) model that has an elementary
characteristic function and an elementary Lévy density (Madan, Carr and
Chang (1998)). The utility function we shall work with is exponential utility.

First we briefly define the Variance Gamma Lévy process and its use
in modelling the stock price distribution at various horizons. The Variance
Gamma process (XV G(t), t ≥ 0) evaluates Brownian motion with drift at a
random time change given by a gamma process (G(t), t ≥ 0). Let

Y (t;σ, θ) = θt+ σW (t)

where W (t) is a standard Brownian motion. The process Y (t;σ, θ) is a
Brownian motion with drift θ and volatility σ.

Our time change gamma process G(t; ν) is a Lévy process whose incre-
ments G(t + h; ν)−G(t; ν) = g have the gamma density with mean h and
variance νh (Rohatgi (2003)):

fh(g) =
gh/ν−1 exp(−g/ν)
νh/νΓ(h/ν)

.

Its characteristic function is (Billingsley (1995)):

φg(u) =

µ
1

1− iuν
¶h/ν

,

and for x > 0, its Lévy density is:

kg(x) =
exp(−x/ν)

νx
.

The Variance Gamma process XV G(t;σ, ν, θ) is defined by

XV G(t;σ, ν, θ) = Y (G(t; ν);σ, θ)

= θG(t; ν) + σW (G(t; ν)).
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The characteristic function of the VG process may be evaluated by condi-
tioning on the gamma process. This is because, given G(t; ν), XVG(t) is
Gaussian. A simple calculation shows that the characteristic function of the
Variance Gamma is

φXVG(t;u) = E[exp(iuXV G)]

=

µ
1

1− iuθν + σ2νu2/2
¶t/ν

.(3.1)

The density pV G(x) of the Variance Gamma process at unit time may
be obtained in terms of the modified Bessel function Ka(u) and is given by
(3.2)

pV G(x) =

p
2/π

ν1/νΓ(1/ν)
x−(1/2−1/ν) exp

µ
θx

σ2

¶
K(1/2−1/ν)

µ
x

σ2

µ
θ2 +

2σ2

ν

¶¶
.

The density of the Variance Gamma process for time increments other than
the unit time may be obtained by making the substitution in equation (3.2)
as follows:

σ → σ
√
t,

ν → ν/t,

θ → θt.

The Variance Gamma process is a Lévy process with infinitely divisible
distributions. Thus the characteristic function of the process may be written
as the Lévy-Khintchine form (Sato (1999)), and the Lévy measure KV G is
given by (Carr, Geman, Madan and Yor (2002))

(3.3) KVG(x) =
C

|x| exp
µ
G−M
2

x− G+M
2

|x|
¶

where

C =
1

ν
,

G =

s
2

σ2ν
+
θ2

σ4
+
θ

σ2
,

M =

s
2

σ2ν
+
θ2

σ4
− θ

σ2
.

The density for the Variance Gamma process can display both skewness
and excess kurtosis. The density is symmetric when θ = 0 and G =M , and
the kurtosis is s(1 + ν) in this case. The parameter θ generates skewness
and we have a negatively skewed density for θ < 0 and a positively skewed
one when θ > 0.

We may accommodate a separate mean by considering the process

H(t) = µt+ θ(G(t)− t) + σW (G(t))
= (µ− θ)t+XVG(t)
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with the characteristic function

φH(t)(u) = E[eiuH(t)]

= eiu(µ−θ)tφXVG(t)(u).

This gives us a four parameter process capturing the first four moments of
the density.

4. Exponential Utility and Investment in
Zero Cost VG Cash Flows

Suppose we invest y dollars in a zero cost cash flow with a VG distrib-
ution for the investment horizon of length h with mean (µ − r)h. We may
write the zero cost cash flow accessed as X

(4.1) X = (µ− r)h+ θ(g − 1) + σW (g),
where g is gamma distributed with unit mean and variance ν, and W (g) is
Gaussian with zero mean and variance g. We suppose the VG parameters
are for the holding period h as the unit period. We also suppose that µ and
r have been adjusted for the length of the period and take this to be unity
in what follows.

The final period wealth is

W = yX.

We employ exponential utility and write

(4.2) U(W ) = 1− exp(−ηW ),
where η is the coefficient of risk aversion. The certainty equivalent CE solves

E(U(W )) = 1− exp(−ηCE).
The goal of the investment is to maximize the expected utility function. The
expected utility is

E(U(W )) = E(1− exp(−ηW ))
= 1−E(exp(−yηX)).(4.3)

To determine y which maximizes the expected utility is equivalent to mini-
mizing the following expression with respect to y:

E(exp(−yηX)).
Theorem 4.1. Suppose we invest y dollars in a zero cost cash flow with

a VG distribution described in equation 4.1 for the investment horizon of
length h. And suppose that we employ the exponential utility function as in
equation (4.2). The optimal solution for the investment is

ỹ =

µ
θ

σ2
− 1

(µ− r − θ)ν
¶

+sign(µ− r)
sµ

θ

σ2
− 1

(µ− r − θ)ν
¶2
+

2(µ− r)
(µ− r − θ)νσ2
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where ỹ = ηy and η is the risk aversion coefficient.

Proof. See Appendix A. ¤

When µ > r, y is positive and we have a long position. Likewise for
µ < r, y is negative and we have a short position.

5. Multivariate VG Portfolio

We take an investment horizon of length h and wish to study optimal
portfolio for investment in a vector of assets whose zero cost excess returns
or financed returns over this period are R− rh. Once again we suppose all
parameters are adjusted for the time horizon and take this to be unity in
what follows.

Let the vector y denote the dollar investment in the collection of assets.
We suppose the mean excess return is µ− r and hence that

R− r = µ− r + x,
where x is the zero mean random asset return vector.

Our structural assumption is that there exist a vector of independent
zero mean VG random variables s of the same dimension as x and a matrix
A such that

(5.1) x = As.

The law of si is that of

si = θi(gi − 1) + σiWi(gi),

where the W 0
is are independent Brownian motions, and the gi are gamma

variates with unit mean and variance νi.
The strategy for estimating this structure is to linearly transform the

observed data x into a new vector x̃ so that the observed data is whitened;
that is, the expectation

E(x̃x̃0) = I.
In other words, the components of x̃ are uncorrelated, and the variances
are equal to unity. One way to whiten the data is to use the eigenvalue
decomposition of the covariance matrix C of x. That is,

C = E(xx0) = EDE0,

where E is the orthogonal matrix of the eigenvectors of matrix C, and D is
diagonal matrix of the corresponding eigenvalues (See Anderson (1958)). We

denote D = diag(d1, ..., dn), and that D−
1
2 = diag(d

−1
2

1 , ..., d
− 1
2

n ). Whitening
gives us

(5.2) x̃ = ED−
1
2E0x.

It follows that
E(x̃x̃0) = I.
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From equations (5.1) and (5.2), we then have

x̃ = ED−
1
2E0x = ED−

1
2E0As = Ãs.

Note that

E(x̃x̃0) = ÃE(ss0)Ã0 = ÃÃ0 = I,

so that the new mixing matrix Ã is an orthogonal matrix. Estimating the
orthogonal matrix Ã is computationally simpler than estimating the orig-
inal mixing matrix A. Under the assumption that the observed data x is
whitened, the goal of ICA is to find a demixing matrix W such that

z = Wx

= WAs.

If W = A−1, then z = s. It is hard to find the perfect separation z = s.
In general, it’s possible to find W such that WA = PD where P is a
permutation matrix, and D is a diagonal matrix. We apply ICA to get
the demixing matrix W as described in Amari, Cichocki and Yang (1996).
We then construct the data for the independent components s by

s =Wx.

The VG parameters can be estimated on these series by univariate methods.

Theorem 5.1. Let the vector y denote the dollar investment in the col-
lection of assets. We suppose the mean excess return is µ− r and the zero
cost excess return is R− r, hence that

R− r = µ− r + x,
where x is the zero mean random asset return vector and assume that E[xx0] =
I. Let

x = As

and assume the law of si is

si = θi(gi − 1) + σiWi(gi),

where A is the mixing matrix, the W 0
is are independent Brownian motions,

and the gi are gamma variates with unit mean and variance νi. Denote

ζ = A−1
µ− r
η

− θ
η

and

y =
1

η
A−1ỹ,
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where y = (y1, y2, · · ·, yn)0, ỹ = (ỹ1, ỹ2, · · ·, ỹn)0, and η is the risk aversion
coefficient. Then the solution of ỹi, for i = 1, 2, · · ·, n, is given by

ỹi =
|ζi|θiνi − sign(ζi)σ

2
i
η

|ζi|σ2i νi
±r³

|ζi|θiνi − sign(ζi)σ
2
i
η

´2
+ 2

³
|ζi|+ sign(ζi)θiη

´
|ζi|σ2i νi

|ζi|σ2i νi

=
θi
σ2i
− 1

ηζiνi
±
sµ

θi
σ2i
− 1

ηζiνi

¶2
+ 2

ζi +
θi
η

ζiσ
2
i νi
,(5.3)

Proof. See Appendix B. ¤
We take the positive or the negative root depending on the sign of³

ζi +
θi
η

´
which is essentially the implied component mean.

6. ICA in Finance

There are many factors that drive the movements of asset returns. It
is not unusual to assume that a set of different asset returns are driven by
some common factors. ICA is a process which takes a set of multivariate
observed data, x, and extracts from them a new set of statistically indepen-
dent components, s (Cardoso (1998)). ICA assumes that the observed data
vectors x are the result of a mixing process

xi(t) =
nX
j=1

aijsj(t).

sj(t) are assumed to be statistically independent. They can be sources from
wide range which affect the asset returns. Using matrix notation, the model
can be written as

x = As,

where A is the unknown mixing matrix.
Another key assumption of ICA is that the independent components s

are non-Gaussian (Hyvärinen, Karhunen and Oja (2001)). Option pricing
theory was introduced by Black and Scholes (1973) . In order to value op-
tions, Black and Scholes derived a partial differential equation via a hedging
argument. The Black-Scholes model evolves a stock price p from the geo-
metric Brownian motion model (Björk (1998)). The stock price model is
given by

dp = µpdt+ σpdw,

where µ denotes the drift rate, σ is the volatility, and w is the standard
Brownian motion. While the Black-Scholes model remains the most widely
used in the financial world, it has known shortcomings, such as volatility
smiles. The Variance Gamma model proposed in Madan, Carr and Chang
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(1998) replaces the diffusion process in the Black-Scholes model by a pure
jump process. The VG process is a non-Gaussian process. While ICA re-
quires no knowledge about the distributions of the independent components
s, we assume that s follows the non-Gaussian VG process. We then esti-
mate VG parameters on these series by the univariate methods of Madan,
Carr and Chang (1998). We use ICA to decompose the multivariate stock
return data into statistically independent components. We hope to investi-
gate the common factors for the multivariate stock price returns. The VG
model provides the information of higher order statistics. The Gaussian
model gives only second order statistics. Non-gaussian models may use-
fully employ ICA algorithms to process the vector of returns to univariate
components amenable to the modelling of higher order statistics using Lévy
models.

7. Empirical Results

We apply ICA to the multivariate financial time series. The goal is to
decompose the observed multivariate time series into a linear combination
of statistically independent components using the fast ICA algorithms of
Hyvärinen (1999). We assume that the independent components follow the
non-Gaussian VG process. We use daily adjusted closing prices from five
companies in the S&P 500. Note that

x(t) =
p(t)− p(t− 1)
p(t− 1)

where p(t) is the stock price for time t. The five stocks chosen are 3M
Company, Boeing Company, IBM, Johnson & Johnson, McDonald’s Corp.,
Merck & Co. We take the first 1000 time series data since January 1990
for our first analysis. We then move forward one month to get the second
set of rolling 1000 day time series data for our second time period analysis.
We repeat the same methodology for 125 time periods of our analysis from
January 1990 to May 2004. Thus, we have 125 different 5 by 1000 matrices
xi, i = 1, 2 . . . , 125 of the relative daily returns.

Performing an ICA analysis on the data of these matrices yields 125
sets of 5 non-Gaussian independent components on which we estimate the
V G process by 5 univariate applications done 125 times. To appreciate the
degree of non-Gaussianity attained by the ICA we present a table with
the average level of kurtosis attained for each of the five independent com-
ponents. We observe that the average kurtosis level for the first factor is
five times the Gaussian level and even for the third factor it is double the
Gaussian level. It can get on occasion to well over 15 times the Gaussian
level using just portfolioes of five stocks. With more stocks we have ob-
tained much higher levels. We also did such an ICA analysis on a Monte
Carlo vector of truly Gaussian returns and found no ability to generate any
excess kurtosis at all. We therefore conjecture that actual investment re-
turns provide considerable access to informative or kurtotic return scenarios
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VG Gauss
Sharpe Ratio 0.2548 0.2127
CE (η = .0005) 47.6883 0.0230
Gain-Loss Ratio 2.3909 1.4536

Table 1. Performance Measures

mean minimum maximum
1st IC 15.3388 4.2466 54.1112
2nd IC 12.9027 3.9871 49.4759
3rd IC 8.6070 3.9973 41.8942
4th IC 6.3648 3.7159 18.5333
5th IC 5.4536 3.5134 12.0329

Table 2. Summary of the Kurtosis for the Five ICs

that would be of interest to preferences reflecting a concern for these higher
moments.

We study investment design by using equation (5.3) to compute the
vector of dollars, y, invested in each stock under the hypothesis of returns
being a linear mixture of independent VG processes. We also compute dollar
amounts invested for the Gaussian process for comparison (see Elton and
Gruber (1991)). At the end of each investment time period, we invest an
amount of money y according to our analysis. When an element of y is
positive, we take a long position. When an element of y is negative, a short
position is taken. We look forward in the time series by one month and
calculate the cash flow CF at the end of the month for each time period.
The formula is as follows:

CF = y ·
µ
p(t+ 21)− p(t)

p(t)
− r
¶

where p(t) is the initial price of the investment, p(t+21) is the price at the
maturity, and r is the 3-month treasury bill monthly interest rate. Note that
we used p(t + 21) as the maturity price, because there are 21 trading days
in a month on average. Table 1 presents the three performance measures,
the Sharpe ratio, the certainty equivalent (CE), and the gain-loss ratio of
both the VG and the Gaussian processes (Farrell (1997)). Table 2 displays
the summary of the kurtosis of the five independent compone

Figure 1 and Figure 2 plot the cumulated cash flows through the 125 in-
vestment time periods of our analysis for the VG and the Gaussian processes.

8. Conclusion

We present and back test an asset allocation procedure that accounts for
higher moments in investment returns. The allocation procedure is made
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Cumulated Monthly Cash Flow over 125 Time Periods for VG Process

Figure 1. VG Cumulated Cash Flow

computationally efficient by employing independent components analysis
and in particular the fast ICA algorithm to identify long-tailed indepen-
dent components in the vector of asset returns. Univariate methods based
on the fast Fourier transform then analyze these components using models
popularized in the literature on derivative pricing. The multivariate portfo-
lio allocation problem is then reduced to univariate problems of component
investment and the latter are solved for in closed form for exponential utility.

The back test shows that the resulting allocations are substantially dif-
ferent from the Gaussian approach with an associated cumulated cash flow
that can outperform Gaussian investment. The packaging of fast ICA, the
fast Fourier transform and the wide class of Lévy process models now avail-
able make higher moment asset allocation a particularly attractive area of
investment design and future research.
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Figure 2. Gaussian Cumulated Cash Flow

Appendix A. Proof of Theorem 4.1

Proof. To find the optimal solution for the investment, our goal is to
maximize the expected utility function as in equation (4.3). It is equivalent
to minimizing

E(exp(−yηX))
over y.

E(exp(−yηX))
= exp(−yη(µ− r − θ))E

µ
exp

µ
−
µ
yηθ − y

2η2σ2

2

¶
g

¶¶
= exp

µ
−yη(µ− r − θ)− 1

ν
ln

µ
1 + ν

µ
yηθ − y

2η2σ2

2

¶¶¶
.
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Minimizing the above expression is equivalent to maximizing

z(y) = yη(µ− r − θ) + 1

ν
ln

µ
1 + ν

µ
yηθ − y

2η2σ2

2

¶¶
.

Suppose α,β ∈ R and α < 0 < β. Let

q(y) = 1 + ν

µ
yηθ − y

2η2σ2

2

¶
,

and q(α) = q(β) = 0. The function q(y) > 0 for y ∈ (α,β) and q is
differentiable on (α,β) and continuous on [α,β]. We have

z(0) = 0

lim
y→α+

z(y) = −∞
lim
y→β−

z(y) = −∞

so that a maximum of z(y) exists on the interval (α,β). The first order
condition with respect to y leads to

z0(y) = η(µ− r − θ) + ηθ − η2σ2y
1 + νηθy − νη2σ2y2/2 .

Furthermore, assume y1 and y2 are two roots for z0(y) = 0, and y1 < 0,
y2 > 0. That is, z0(y1) = z0(y2) = 0. Setting z0(y) = 0, we obtain

(µ− r − θ)
µ
1 + νηθy − νη

2σ2

2
y2
¶
+ θ − ησ2y

= µ− r + ((µ− r − θ)νθ − σ2)ηy − (µ− r − θ)νη
2σ2

2
y2(A.1)

Observe that z0(0) > 0 if µ > r. We have z(y1) < 0 and z(y2) > 0. According
to the mean value theorem, y2 is the root which gives the optimal solution.
Similarly, if µ < r, then z0(0) < 0. We have z(y1) > 0 and z(y2) < 0 so that
y1 gives the optimal solution in this condition. Let ỹ = yη and solve for this
magnitude, noting that y is then ỹ/η. Hence we rewrite equation (A.1) as

ỹ2 − 2(µ− r − θ)νθ − σ
2

(µ− r − θ)νσ2 ỹ − 2(µ− r)
(µ− r − θ)νσ2

= ỹ2 − 2
µ
θ

σ2
− 1

(µ− r − θ)ν
¶
ỹ − 2(µ− r)

(µ− r − θ)νσ2
= 0.

Hence we have

ỹ =

µ
θ

σ2
− 1

(µ− r − θ)ν
¶

+sign(µ− r)
sµ

θ

σ2
− 1

(µ− r − θ)ν
¶2
+

2(µ− r)
(µ− r − θ)νσ2 .

¤
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Appendix B. Proof of Theorem 5.1

Proof. We choose the investment vector y to maximize expected ex-
ponential utility for a risk aversion coefficient η. The objective is therefore
that of maximizing

1− e−ηy0(µ−r)E[e−ηy0x] = 1− e−ηy0(µ−r)E[e−ηy0As].
The expectation is then given by

E[e−ηy
0As] = exp

Ã
nX
i=1

η(y0A)iθi − 1

νi
ln

µ
1 + θiνiη(y

0A)i − σ
2
i νi
2
η2(y0A)2i

¶!
.

It follows that the certainty equivalent is

CE = y0(µ− r)+
nX
i=1

(−y0A)iθi+ 1

ηνi
ln

µ
1 + θiνiη(y

0A)i − σ
2
i νi
2
η2(y0A)2i

¶
.

We may write equivalently

CE = η(y0A)
µ
A−1

µ− r
η

− θ
η

¶
+

nX
i=1

1

ηνi
ln

µ
1 + θiνiη(y

0A)i − σ
2
i νi
2
η2(y0A)2i

¶
.

Now define

ỹ0 = ηy0A,

ζ = A−1
µ− r
η

− θ
η
,

and write

CE =
nX
i=1

·
ζiỹi +

1

ηνi
ln

µ
1 + θiνiỹi − σ

2
i νi
2
ỹi
2

¶¸

=
nX
i=1

ψ(ỹi).

We have additive functions in the vector ỹi and these may be solved for
using univariate methods in closed form. We then determine

y =
1

η
A−1ỹ.

First observe that the argument of the logarithm is positive only in a
finite interval for ỹi. Hence the CE maximization problem has an interior
solution for ỹi.

The first order condition yields

ψ0(ỹi) = ζi +
θi
η −

σ2i
η ỹi

1 + θiνiỹi − σ2i νi
2 ỹi

2
= 0.

It is clear that

ψ0(0) = ζi +
θi
η
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and the optimal value for ỹi is positive when ψ0(0) > 0 and negative other-
wise.

We may write the condition as

|ζi|+
sign(ζi)

³
θi
η −

σ2i
η ỹi

´
1 + θiνiỹi − σ2i νi

2 ỹi
2
= 0.

The argument of the logarithm must be positive and so we write

|ζi|
µ
1 + θiνiỹi − σ

2
i νi
2
ỹi
2

¶
+ sign(ζi)

µ
θi
η
− σ

2
i

η
ỹi

¶
= 0.

We may rewrite this expression as the quadraticµ
|ζi|+ sign(ζi)

θi
η

¶
+

µ
|ζi|θiνi − sign(ζi)

σ2i
η

¶
ỹi − |ζi|σ

2
i νi
2

ỹi
2 = 0,

or equivalently that

|ζi|σ2i νi
2

ỹi
2 −

µ
|ζi|θiνi − sign(ζi)

σ2i
η

¶
ỹi −

µ
|ζi|+ sign(ζi)

θi
η

¶
= 0.

The solution for ỹi is given by

ỹi =
|ζi|θiνi − sign(ζi)σ

2
i
η

|ζi|σ2i νi

±

r³
|ζi|θiνi − sign(ζi)σ

2
i
η

´2
+ 2

³
|ζi|+ sign(ζi)θiη

´
|ζi|σ2i νi

|ζi|σ2i νi

=
θi
σ2i
− 1

ηζiνi
±
sµ

θi
σ2i
− 1

ηζiνi

¶2
+ 2

ζi +
θi
η

ζiσ
2
i νi
.

¤
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